nature ecology & evolution

Article

https://doi.org/10.1038/s41559-024-02571-w

Inferring DNA methylationinnon-skeletal
tissues of ancient specimens

Received: 7 May 2023

Accepted: 1 October 2024

Published online: 20 November 2024

Yoav Mathov'?, Malka Nissim-Rafinia', Chen Leibson®", Nir Galun',
Tomas Marques-Bonet® 345¢, Arye Kandel’, Meir Liebergal’,
Eran Meshorer®'?2

&Liran Carmel ®'

% Check for updates

Genome-wide premortem DNA methylation patterns can be

computationally reconstructed from high-coverage DNA sequences of
ancient samples. Because DNA methylationis more conserved across
species than across tissues, and ancient DNA is typically extracted from
bones and teeth, previous works utilizing ancient DNA methylation maps
focused on studying evolutionary changes in the skeletal system. Here we
suggest that DNA methylation patterns in one tissue may, under certain
conditions, be informative on DNA methylation patternsin other tissues

of the same individual. Using the fact that tissue-specific DNA methylation
builds up during embryonic development, we identified the conditions that
allow for such cross-tissue inference and devised an algorithm that carries
it out. We trained the algorithm on methylation data from extant species
and reached high precisions of up to 0.92 for validation datasets. We then
used the algorithm on archaic humans, and identified more than 1,850
positions for which we were able to observe differential DNA methylation

in prefrontal cortex neurons. These positions are linked to hundreds of
genes, many of which are involved in neural functions such as structural and
developmental processes. Six positions are located in the neuroblastoma
breaking point family (NBPF) gene family, which probably played arole
inhuman brain evolution. The algorithm we present here allows for the
examination of epigenetic changes in tissues and cell types that are absent
from the palaeontological record, and therefore provides new ways to study
the evolutionary impacts of epigenetic changes.

Changes in gene regulation often underlie phenotypic divergence'™,
making the identification of regulatory differences between archaic
humans (Neanderthals and Denisovans) and anatomically modern
ones a major goal of palaeogenetics’. Because RNA is rarely presentin
palaeontological remains®, changes in gene regulation must be inferred
indirectly from the ancient DNA (aDNA) sequences themselves. Previ-
ous works showed that aDNA degradation signals can be harnessed to
computationally reconstruct premortem genome-wide DNA methyla-
tion maps’’. DNA methylation is a key epigenetic mark that strongly
affects the activity level of regulatory regions such as promoters

and enhancers'. Hence, its reconstruction provides information on
premortem gene activity patterns in ancient individuals. Indeed, the
reconstruction of DNA methylationin Neanderthals, a Denisovanand
anatomically modern humans allowed us to identify regulatory differ-
ences between these human groups and associate them with pheno-
typic changes, opening the field of palacoepigenetics®™".

However, DNA methylation is tissue-specific to the extent that
methylation patternsintwo different tissues of the same organismare
often more diverged than methylation patterns in the same tissue in
two different species™*. Although occasionally aDNA is extracted from
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soft tissues such as skin” and liver', this is limited to a small number
of highly conserved and relatively young samples. Generally, bones
and teeth are the main sources of aDNA. In particular, these tissues
are the source of all archaic human aDNA. Accordingly, our previous
palaeoepigenetic studies focused on the evolution of the skeletal
system”?, but could provide only limited insights on other systems
such as the nervous system®.

Yet, DNAmethylationinone tissuestill carries information on DNA
methylation in other tissues of the same individual. The reason is that
DNA methylation is erased almost completely in the zygote, and then
re-establishedinacell type-specificmanner during development'®. When
aDNA methylation change that separates human groups is established
during early developmental stages, it may propagate to all descendant
celltypes, and be simultaneously manifested in multiple tissues.

Here we show that for a certain class of DNA methylation changes,
we are able to use parsimony considerations to predict the timing of
the change during development, rendering skeletal DNA methylation
changes informative on the methylation state in other tissues. Test-
ing our method on modern primate tissues, we show that we achieve
precision of 0.7-0.92 in using DNA methylation changes in one tissue
to predict corresponding changes in another tissue.

We applied our method to predict DNA methylation changes in
prefrontal neurons between modern humans, archaic humans and
chimpanzees. We found 71 genes that are associated with differential
neuronal DNA methylation separating modern and archaic humans,
aswellas 870 genes that are associated with differential neuronal DNA
methylation separating all humans from chimpanzees. We show that
some of these genes are involved in neural functions. Moreover, we
discovered six methylation changes in genes that carry the Olduvai
domain, whose copy number is associated with an increase in brain
volume and cognitive function, suggesting that these changes might
be importantin human brain evolution.

Results
Given the almost complete reset of DNA methylation patterns in the
zygote as part of the epigenetic reprogramming process'®, evolutionary
differences in DNA methylation patterns between species are mani-
fested as changes that build up during embryonic development. A
methylation change that occurs in cells that are not fully differenti-
ated would propagate to all descendant cell lineages, unless reverted
by a later change. For example, if a site goes through an evolutionary
methylation change that builds up at a time that precedes the split of
the mesodermal and the ectodermal germ layers, the difference in
methylation level would show up bothinbone andin neurons (Fig. 1a).
For any pair of tissues or cell types, we denote by ‘fundamental
changes’ all those evolutionary changes to DNA methylation that were
established before the developmental split between the two tissues
or cell types. Evolutionary DNA methylation changes that occurred
after this developmental time point would be called tissue-specific
changes (Fig. 1a). Note that the terms tissue-specific and fundamental
methylation changes should be always understood in the context of
two specific tissues or cell types. For example, a methylation change
affecting all endodermal tissues is still considered tissue-specificif we
compare, for example, lung with bone. The basis of the algorithm we
develop belowis the fact thatif we are able to determine, for two tissues
or cell types, whether an evolutionary change in DNA methylation is
either fundamental or tissue-specific, then the methylation level in
one tissue or cell type would be informative on the methylation level
inthe other tissue or cell type.

Theinference procedure

We considerathree-species phylogeny, in which the species are marked
as ‘reference’ (superscriptr), ‘target’ (superscript t) and ‘outgroup’
(superscript 0). For these three species, we examine five DNA meth-
ylation maps in two tissues (or cell types). In one tissue, denoted ‘all’

(superscripta), DNAmethylation dataare available for all three species.
Inthe other tissue, denoted ‘partial’ (superscript p), DNA methylation
dataareavailable for the reference and the outgroup only (Fig. 1b). Our
goalis to predict the methylation levels in the target in tissue ‘partial’.

Auseful abstraction of the problem, which allows for convenient
conceptualization of the approach, is toimagine that the DNA methyla-
tion in each CpG position is a binary variable than can be either high
or low. We dub the combination of binary methylation levels across
the five available DNA methylation maps in a specific CpG position a
configuration. There are exactly three possible combinations of meth-
ylationstates that describe CpG positions with differential methylation
across the three species in tissue ‘all’ (Fig. 1c). An evolutionary meth-
ylation change in tissue ‘all’can occur along the branch leading to the
reference (reference-derived), along the branch leading to the target
(target-derived) or along either of the two branches that separate the
outgroup from the reference and target (outgroup-specific). Each of
these three combinations may be associated with any of four different
combination of methylation states in the tissue ‘partial’, leading to a
total of 12 possible configurations that should be examined (Fig. 1c).

For some configurations, itis possible to determine the develop-
mental timing of the methylation change using parsimony, whereas for
othersitis not. In a previous publication”” we outlined the procedure
and demonstrated it in a particular configuration. Here we examine
all possible configurations, identify those in which inference on the
‘target’ methylation canbe made, develop adetailed algorithmto carry
out the inference procedure and use it to predict DNA methylation
levelsin archaic human brains.

Of the 12 possible configurations, there are five for which par-
simony considerations provide a prediction for the timing of the
developmental change in methylation (Fig. 1c). In three configurations
we predict that the change was tissue-specific, in two configurations
the change was fundamental and in all others that it is impossible to
determine the timing of the change. In tissue-specific configurations
we end up predicting that the methylation change detected in tissue
‘all’does not hold intissue ‘partial’. These cases are less relevant for the
current study, where our goalis to identify methylation changes in tis-
sue ‘partial’. Inthe remainder of the article, therefore, we focus solely
onthe two configurationsin which we conclude that the methylation
change was fundamental. Note that because data are missingin tissue
‘partial’ of the ‘target’, we cannot make any predictions regarding
developmental timing of the methylation change in target-derived
changes.

Quantifying the performance

Based on the abstraction above, we developed an algorithm that
accounts for the non-binary nature of DNA methylation and identifies
CpG positions that are consistent with having gone through a funda-
mental methylation change (Methods). In these positions, we predict
that the methylation levels in ‘target’ in tissue ‘partial’ are closer to
those in the outgroup (for a reference-derived methylation change)
or to those in the reference (for an outgroup-specific methylation
change) (Fig. 1c).

Eventually, we would like to apply our algorithm to a triad of
species made of modern human (reference), archaic human (target)
and chimpanzee (outgroup). However, lacking DNA methylation in
non-skeletal tissues of archaic humans, we optimized the parameters
and quantified the performance based on a triad of extant species
with available DNA methylation data in multiple tissues. To resemble
the triad that we will eventually use, we used three modern primate
species:modern humans as the ‘reference’, chimpanzees as the ‘target’
and rhesus macaques as the ‘outgroup’.

We trained the algorithm for the above triad of extant species, using
heartasthetissue ‘all’and kidney as the tissue ‘partial’ (Methods, Supple-
mentary Tables1and 2 and Extended DataFigs.1and 2). For predicting
reference-derived fundamental changes, we obtained a precision of

Nature Ecology & Evolution


http://www.nature.com/natecolevol

Article

https://doi.org/10.1038/s41559-024-02571-w

Fig.1| Conceptual framework of the algorithm. a, Schematic embryonic
development trees. DNA methylation changes along the tree would propagate
to all descendant lineages. Considering a pair of tissues, for example bone and
brain, methylation changes that occurred earlier than their developmental

split (right) are fundamental and will affect both tissues. Changes that occurred
after the split (left) are tissue-specific and will affect only one of the tissues.

b, Different triad phylogenies and paired tissues are considered by the algorithm
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for validation and test sets. Methylation data are missing for the target ‘t’ in tissue
‘p, butavailable for tissue ‘a’ for all species. ¢, Identification of configurations,
outofall12 possible, where the methylation state in the target in tissue ‘p’ can

be predicted. When prediction is possible, the type of methylation change,
whether fundamental (F) or tissue-specific (TS), is denoted. Note that for clarity,
methylation levels are considered as binary variables.

0.85, compared with an average of 0.22 in permuted data. For predict-
ing outgroup-specific fundamental changes, we obtained a precision of
0.77,compared with an average of 0.40 in permuted data (Fig. 2a). Ele-
vated precision for permuted datawhen predicting outgroup-specific
fundamental changes is expected and, infact,inherent to our algorithm.
This stems from the fact that the evolutionary distance between the
outgroup and the reference and/or targetis, by definition, longer than
theevolutionary distance betweenthetarget and thereference, leading
toagreater similarity inthe DNA methylation patterns of the reference
and the target, and hence to an increased probability of finding by
chance configurations that resemble outgroup-specific fundamental
changes (‘Discussion’). Inany case, for both reference-derived changes
and outgroup-specific changes, the algorithm shows training set preci-
sion whichis significantly higher thanrandom.

We validated our algorithm using DNA methylation data from liver
and lung in these three species, which are tissues on which the algo-
rithmwas not trained. Ineach comparison, the precisionachieved using

the real data significantly exceeded the precision that was achieved
using permuted data. The observed precision in predicting fundamen-
tal changes was in the range 0.7-0.84, compared with 0.21-0.37 on
permuted data (Fig. 2b and Supplementary Table 3). Flipping the roles
of reference and target, namely picking modern human as the target
and chimpanzees as the reference, yielded very similar performance
estimations (Supplementary Table 3 and Extended Data Fig. 3). To
evaluate the statistical significance of the precision levels we obtain,
we performed 1,000 permutations, in which in each permutation we
randomly shuffled the tags ‘reference’, ‘target’ and ‘outgroup’ across
the samples, keeping the total number of reference, target and out-
group samples fixed. For reference-derived inference, we obtained
that 0.004 of the permutations yielded higher precisionthan our algo-
rithm, whereas this fraction was 0.021 for outgroup-specificinference.
Combined, these results show that our algorithmachieves significantly
higher precision than expected by chance, even when generalized to
tissues and a species combination on which it was not trained.
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Fig.2|Precision in detecting fundamental DNA methylation changes using
endodermal and mesodermal tissues. a, Precision of the algorithm using the
optimized parameters on observed data (blue) compared with permutations

(orange) in the detection of outgroup-specific (left) and reference-derived
(right) fundamental changes. b, Validation of the algorithm on tissues that were
notused for training. Error bars denote1s.d.

Because of the need to achieve sufficient statistical power, recon-
structing DNA methylation maps of aDNA requires the use of moving
averages across windows of consecutive CpG positions®. Although we
showedinthe past that this smoothing does not substantially affect the
detection of differentially methylated regions (DMRs)’, we neverthe-
less wished to examine the effect of smoothing on the precision of our
algorithm. We therefore applied the algorithm to asmoothed version
ofthe above data (Methods) and found that the precision remains very
similar to that obtained for non-smoothed data, and that it is always
significantly higher than the precision achieved on permuted data
(Supplementary Table 3).

Identifying differential methylation in neurons

The method we developed can be used to infer on aDNA methylation
in any tissue. Because the large volume and high complexity of the
human brain stand out as hallmarks of modern humans, we decided
to demonstrate the applicability of our method to this organ first. To
this end, we applied the algorithm with bone serving as the tissue ‘all’
and neuronal celllines fromthe prefrontal cortex as the tissue ‘partial’.

Forbones, we considered published DNA methylation data (includ-
ing datagenerated by usin previous works), data of four human femora
measured by us for the current study and reconstructed DNA meth-
ylation maps in ancient samples, including maps we reconstructed in
previous works'®"” and a new map of Mesolithic anatomically modern
human from Sweden' that we reconstructed for this study (Methods
and Supplementary Table 4). DNA methylation in prefrontal cortex
cell lines was taken from published studies®>?'. In total, neuronal DNA
methylation data comprise 26 modern humans, 11 chimpanzees and
15 macaques, and bone DNA methylation data comprise 11 modern
humans (5 measured, 6 reconstructed), 2 archaic humans, 7 chimpan-
zees and 10 macaques.

We first estimated the precision of our algorithm on a triad of
extant species, composed of modern human as reference, chimpanzee
astarget, and rhesus macaque as outgroup. This yielded a precision of
0.81in predicting outgroup-specific fundamental changes, and 0.92
in predicting reference-derived fundamental changes, both being
significantly higher than the values achieved for random permuta-
tions (Fig. 3a).

We then applied the algorithm to the triad composed of mod-
ern human as ‘reference’, archaic human as ‘target’ and chimpanzee
as ‘outgroup’, and identified 1,750 CpG positions presenting puta-
tive outgroup-specific fundamental changes, and 122 CpG positions

presenting putative reference-derived fundamental changes. Of these,
1,131 CpG positions (64.6%), presenting putative outgroup-specific
changes, arelocated in the promoter or gene body of 870 genes, and 80
CpG positions (61.1%), presenting putative reference-derived changes,
arelocatedinthe promoter or gene body of 71 genes (Supplementary
Table5).

Archaic humans, which serve as ‘target’, comprise only two sam-
ples. To assess the possible reduction in power because of this small
sample set, we repeated the analysis on the triad of extant species, but
randomly downsampled the ‘target’ chimpanzee from 11 samples to
only 2. We still detected 7 of the original 8 CpG positions associated
with reference-derived changes, and 483 of the 531 original CpG posi-
tions associated with outgroup-specific changes. This suggests that
the use of only two samples in the target set reduces the power of our
analysis by approximately 10-12%.

We accounted for batch effects and evaluated the false discovery
rate (FDR) for our actual triad by performing 1,000 permutations,
shuffling the tags ‘reference’, ‘target’ and ‘outgroup’ of the bone sam-
ples and counting the number of detected reference-derived and
outgroup-specific changes. On average, we observed 0.49 reference-
derived CpG positions (FDR = 0.005) and 68.6 outgroup-specific CpG
positions (FDR = 0.044).

A considerable number of the CpG positions associated with fun-
damental changes are grouped in clusters. This observation probably
reflects the known correlation between adjacent CpG positions, and
indicates regional changes inmethylationin regulatory regions, where
one often finds aclose grouping of multiple differentially methylated
CpGs?*. We hypothesized that even isolated CpG positions showing
fundamental changes would represent regional methylation changes.
Namely, that the adjacent CpG positions would show changes in DNA
methylation compatible with the same fundamental changes, despite
not crossing the significance threshold. To test this, we computed the
average methylationinsuchadjacent CpG positions, and compared it
with both the nearby isolated CpG positions showing a fundamental
change and the average methylation level in the genome. As expected,
we found that in 89.1% of the cases the methylation level in adjacent
CpGs clustered with the neighbouringisolated CpG position, suggest-
ingthatevenlocifeaturing anisolated CpG position with afundamental
change might, in fact, represent a regional methylation change.

CpG positions with fundamental methylation changes are
expected to preferentially fallinside regions we detected in a previous
work as differentially methylated across the same triad, using asubset
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Fig.3|Precisionin detecting fundamental DNA methylation changes using brain and bone. a,b, Precision of the algorithm in detecting fundamental changes
affecting both bone and prefrontal cortex neurons (a) or bulk prefrontal cortex tissue (b) on observed data (blue) and permutated data (orange). Error bars
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ofthebone samples usedin the current study’. Indeed, 172 of the 1,750
outgroup-specific positions (9.8%) fall in the list of 2,031 DMRs that
separate chimpanzees and humans (P < 107°° hypergeometric test),
and 3 ofthe122 reference-derived positions (2.5%) fallin the list of 873
anatomically modern human-derived DMRs (P=2.8 x 107%). Likewise,
137 of the 870 (15.7%) genes associated with outgroup-specific changes
overlap with thelist of 1,185 differentially methylated genes separating
chimpanzees and humans (P=7.9 x107*°), and 5 of the 71 (7%) genes
associated with reference-derived changes overlap with the list of 588
differentially methylated genes that have changed in modern humans
(P=4.8x107%). Notably, we do not expect acomplete overlap, because
we used an upgraded version of the reconstruction algorithm, includ-
ing new filtering techniques and histogram matching.

Testing for enrichment in biological functions of our gene lists
yielded nosignificant terms. Thisis expected, given that afundamental
methylation change is, by definition, a change that is shared across
multiple tissues. Specifically, fundamental methylation changes that
aresharedbetweenbone and brain could be associated with brain,bone
orany other tissue (Fig.1a). Therefore, these changes could be related
toawide range of functions, making it unlikely that specific functional
enrichment would be observed. However, given the importance of the
braininhumanevolution, and the lack of methylation datafrom brain
inarchaic human, we focus here on changes that might have arelation
to the nervous system.

We focused on genes associated with a particularly large number
of positions with fundamental changes (Fig. 4 and Supplementary
Table 6). In this context, we identified 26 outgroup-specific changes
and 3 reference-derived changes localized in the locus containing
the genes ZNF707 and CCDCI66. Notably, our knowledge about the
functions of these genes is limited, with scant evidence pointing at
potential relevance to cancer®?°. Nonetheless, givenits classification
as a zinc-finger protein, it is reasonable to hypothesize that ZNF707
probably possesses an as-yet undiscovered regulatory role.

Next in terms of the number of fundamental changes is the gene
ADAMTS2, which exhibits 15 outgroup-specific changes. This gene
productregulates neuronal migration by cleaving reelin”, and hasbeen
implicatedin schizophreniabecauseit activates dopaminergic signal-
ling and exhibits overexpression in the blood of people during episodes
of psychosis (a phenomenon that can be reversed by antipsychotic
medications)®*?°. Moreover, in the Human Phenotype Ontology®’,
ADAMTS2 shows associations with language impairment, intellec-
tual disability, microcephaly, neurodevelopmental delay and other
brain-related terms. The gene NF-YA harbours five outgroup-specific
changes. NF-YAisacomponent of the NF-Y transcription factor, which
protects neurons from cell death®. Inactivation of NF-Yhasbeen linked

to various forms of neuronal pathologies®**. PIWIL1 exhibits seven
outgroup-specific fundamental changes and regulates neuronal polari-
zationand migration®*. BRCAI harbours five outgroup-specific funda-
mental changes. Apart from being one of the most well-studied tumour
suppressors, BRCA1plays arole in the survival of neural progenitors™.
Itis also expressed in the hippocampus, and has been observed to be
under-expressed in patients with Alzheimer’s disease. Knocking down
this gene in the dentate gyrus leads to learning and memory deficits,
impairs synaptic plasticity and neuronal shrinkage®®. Notably, hypo-
methylation inaspecific region in BRCA1, which does not overlap any
ofthe positions with fundamental changes, has been associated with
Alzheimer’s disease”. Moreover, a variant of BRCAI has been asso-
ciated with intellectual disability*®. AHRR, which also harbours five
changes, represses aryl hydrocarbon receptor (AHR), an important
mediator for many cellular events. The main hallmarks of brain ageing,
including oxidative stress, neuroinflammation and neurogenesis, are
affected by AHR, suggestingits function as aregulator for ageinginthe
brain, together withits effect on the nervous system development***°,
The deubiquitylase OTUBI also exhibit five changes encoding the
gene OTUBI. This gene mediates neuronal survival after intracerebral
haemorrhage*"*2, The effects of this protein on neuroimmune response
contribute to pathologies associated with brain diseases such as
Parkinson’s disease and multiple sclerosis***.

Turning our attention to genes associated with reference-derived
changes, of eight such genes with three altered positions (the highest
number of such alternations in a gene), three show a relationship to
the brain. Mutations in TMEM216 have been linked to syndromes that
involve brain abnormalities**®. TMEM216 regulates ciliogenesis, a
process withsubstantialimportancein brain development, and disrup-
tionsin TMEM216 function lead toimpairmentsin various neurodevel-
opmental processes*’. Another gene linked to ciliary functionis CROCC.
CROCCencodesrootletin, aproteininvolvedin the formation of ciliary
rootlets. Mutationsin this gene in Drosophilahave been associated with
sensory deficits*®. PSMC2 is acomponent of the 26S proteasome com-
plex that plays a role in various neural processes, including synaptic
plasticity*>*° and brain autophagy®'. Notably, impairments in the 26S
proteasome complex have been strongly associated with the presence
of braininclusions such as alpha-synuclein and tau tangles*.

Five CpG positions associated with outgroup-specific fundamental
changes, and another one associated withreference-derived changes, are
locatedingenes from the neuroblastoma breaking point family (NBPF)
gene family, inside the LOC100288142 locus (Fig. 4). NBPF proteins are
enriched witha protein domain called the Olduvai domain thatis key to
human brain evolution. This domain, whichis found almost exclusivelyin
NBPF proteins, went through a human-specificincrease in copy number,
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Fig. 4| Genes featuring multiple fundamental DNA methylation changes.

a, Genes featuring more than four outgroup-specific fundamental changes.
Instances in which changes overlap multiple genes are consolidated in the same
column. Methylation alterations overlapping genes associated with the Olduvai

domain (NBPF8, NBPF9 and NBPFI10) are collectively assembled in the column
furthest right. b, Genes featuring more than two reference-derived fundamental
changes, along with the reference-derived change that intersects with NBPF9,
which harbours the Olduvai domain.

reaching approximately 300 copies. Chimpanzees show less than half
that number of copies, and the number drops to several dozens of copies
inother Old World monkeys, and to around asingle copy in non-primate
mammals. The domain is absent in non-mammals®, Olduvai domain
copy number variation is correlated with brain volume®**, cognitive
functions®® and autistic symptoms®” . It is also negatively correlated
withschizophrenia®. NBPF genesin general have been found to enhance
neural stem cell proliferation®’. Four of the five outgroup-specific fun-
damental changes are located in NBPF10, one of the NBPF genes with
the highest number of human-specific Olduvai domain copies. NBPF10
is adjacent to NOTCH2NL, an additional gene linked to human brain
volume®*®, and it has been suggested that the two evolved in tandem®*.

To further explore potential regulatory effects of the differential
methylation, we examined whether CpG positions with fundamental
methylation changes tend to overlap enhancers associated withbones
and neurons more than would be expected by chance (Methods). In
bones, we observed a significant overlap for both outgroup-specific
(298 intersecting positions; P=9.04 x 10'°) and reference-derived CpG
positions (28 intersecting positions; P=2.66 x 10™). In neurons, sig-
nificant overlap was only evident for outgroup-specific CpG positions
(8lintersecting positions; P=5.37 x10”7), whereas no significant over-
lap was observed for reference-derived CpG positions (4 intersecting
positions). Next, we examined genes that are associated withenhancers
that overlap CpG positions with differential methylation. Although
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thereare nosuch genes for reference-derived CpG positions, there are
330 and 480 genes for outgroup-specific CpG positions in bones and
neurons, respectively. Enrichment analysis of these genes revealed
similar patterns, despite representing two distinct tissues, highlighting
organelle functions over tissue-specific ones (Supplementary Table 7).
This aligns with expectations, considering that fundamental changes
affect multiple tissues.

We next searched for motifs that overlap these enhancers and
transcription factors that bind these motifs (Supplementary Table 8).
In outgroup-specific changes we found enrichment of transcription
factorsthatarerelated to brain development (GLI1, GLI2, ZIC1, NHLH2,
NR2F2, ZIC2 and ZNF148; FDR = 2.3 x 107%) and specifically forebrain
development (GLI1, GLI2, ZIC1, NHLH2 and NR2F2; FDR = 0.01).

Application to bulk prefrontal cortex

In addition to prefrontal neurons, DNA methylation is also available
from bulk prefrontal cortex tissue from humans, chimpanzees and
rhesus macaque (Methods and Extended Data Fig. 4)%>°. To exam-
ine whether the methylation changes we identified in neurons can be
detected in whole tissues, we repeated the analysis with these bulk
DNA methylation measurements.

We first evaluated the performance of our algorithm using the
same triad of extant species as we used before, setting modern human
as ‘reference’, chimpanzee as ‘target’ and rhesus macaque as ‘outgroup’,
with bone serving as the tissue ‘all’ and bulk prefrontal cortex as the
tissue ‘partial’. Unfortunately, there is a small number of samples of
DNA methylationin bulk prefrontal cortex (three humans, three chim-
panzees and two rhesus macaques) with relatively lower coverage
(Supplementary Table 4), compromising the power of our approach
to detect differentially methylated positions. Indeed, although the
precision we achieved is significantly higher than for permuted data
(P<107*), we observed lower values than in previous analyses. We
obtained a precision of 0.66 in predicting reference-derived changes
(compared with amean of 0.32 for permuted data) and a precision of
0.55in predicting outgroup-specific changes (compared withamean
of 0.36 for permuted data) (Fig. 3b).

We then considered archaic humans as ‘target’ and chimpanzees
as‘outgroup’ and applied our algorithmto predict differential methyla-
tionin bulk brain tissue. We found 396 CpG positions associated with
putative outgroup-specific changes and 53 CpG positions associated
with putative reference-derived changes. The outgroup-specific CpG
positions are associated with 248 genes and the reference-derived
CpG positions are associated with 35 genes (Supplementary Table 9).
Reassuringly, we found high consistency between these CpG positions
and those identified using prefrontal neurons. In total, 156 of the 396 of
the outgroup-specific CpG positions appear among the 1,750 positions
identified using prefrontal neurons (P<1073%, hypergeometric test)
and 8 of the 53 of the reference-derived CpG positions appear among
the 122 positions identified using prefrontal neurons (P=4.7 x 10™*).
Similarly, of the 248 genes associated with outgroup-specific changes
in bulk prefrontal cortex, 116 were found in the corresponding list of
870 genesidentified using prefrontal neurons (P<107°°) and 8 of the 35
genes associated with reference-derived changes were also identified
using neurons (P=3.54 x107).

Discussion

Based on the embryonic developmental timing of an evolutionary
methylation change, we defined two families of changes; fundamen-
tal changes are those that occurred before the developmental split
between a pair of tissues, whereas tissue-specific changes are those
that occurred after the split. In this work, we developed an algorithm
todetect CpG positions that underwent fundamental changes, because
they resultin DNA methylation differences across the examined species
thatarealsoreplicated in the tissue ‘partial’ (Fig. 1c). Similar methodol-
ogy canbe used to detect tissue-specific changes as well, although these

resultinnochangein DNA methylation across the speciesin the tissue
‘partial’ (Fig. 1c), hence potentially presenting more limited evolution-
ary interest. The main algorithmic modification thatis required would
be to use statistical tests for equivalence, such as the two one-sided
t-tests (TOST) procedure®.

The algorithm can be used to determine the methylation state in
non-skeletal tissues of archaic humans, as long as methylation dataare
available for this tissue in both modern humans and chimpanzees (or
any other non-human ape, in the case that bone methylation data are
available for this species as well). This ability to obtain information on
DNA methylationinarchaictissues that are not accessiblein the palae-
ontological record opens new ways to examine changesin gene regula-
tionand their potential effect on evolutionary adaptationsin humans.

To quantify performance, we tested the algorithm on three
extant species, comprising modern humans, chimpanzees and rhe-
sus macaques (Fig. 2a). The longer branches on this phylogenetic
tree (median divergence time between modern humans and rhesus
macaques is 28.9 million years ago (Ma), compared with the median
divergence time between modern humans and chimpanzees of 6.4 Ma
(ref. 68)) resultin an underestimation of the performance of the algo-
rithm, because the likelihood of independent reversal of the meth-
ylation state along each branch increases. We therefore estimate that
our algorithm works with even higher precisions than those reported
here. We used the algorithm to find genomic positions in which the
methylation state can be determined in the brains of archaic humans.
We focused on the brain because of its central role in human evolution
and the potential implications of brain-related differences between
human groups, and between humans and chimpanzees. However,
the algorithm we present is general and can be used to determine the
methylation state in other archaic tissues. In fact, brain is probably
among the most challenging choices, given its large developmental
distance frombone (Fig.1a). A tissue that is developmentally closer to
bone, such as muscle or heart, is likely to result in a larger number of
positions whose methylation state can be determined.

We showed that we are able to detect two types of fundamental
DNA methylation changes. Reference-derived changes are those in
which DNA methylation levels in modern humans are different from
thoseinbotharchaic humans and chimpanzees, representing methyla-
tion patterns that are unique to modern humans. Outgroup-specific
changes are those in which DNA methylation levels in both modern
and archaic humans are different from those in chimpanzees, rep-
resenting methylation patterns that are shared across modern and
archaic humans. In all analyses, we detect fewer reference-derived
positions than outgroup-specific ones, although with higher preci-
sion. This is expected considering the much shorter evolutionary
time span in which the methylation change could have occurred for
reference-derived changes compared with outgroup-specific ones
(Fig. 1b). Shorter distances mean fewer methylation change events,
which result in lower numbers of detected events, but also in lower
probability for reversal of methylation changes, and therefore higher
precision of parsimony-based inference.

We present here evidence for astrong connection between genes
associated with fundamental changes and neuronal functions. Among
the most interesting findings is the identification of six fundamental
changes in NBPF genes carrying Olduvai domains, which seem to be
associated with human brain evolution. Whereas the association of
Olduvai domains tobrain evolution has focused thus far on their copy
number, our findings suggest that methylation changes might also have
aroleinthis; in particular, NBPFI0, has four fundamental methylation
changes andis also one of the genes with the largest number of Olduvai
domains. With that, future researchisimperative to establish causality
and validate the functional importance of these methylation changes
on phenotypes.

The number of CpG positions that can be tested for differen-
tial methylation is constrained by the limited availability of DNA
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methylation data from primate bone, because part of the data was
produced using llluminaInfinium MethylationEPIC BeadChip methyla-
tion array (Supplementary Table 4), which represent approximately
3% of (but enriched for functional) CpG positions in the genome. Asa
result, our set of CpG positions associated with fundamental changes
represents only asubset of the positions that show such anassociation.
Inaddition, restrictions come from the fact that we considered a CpG
position only if data were available in at least two samples from each
group. This criterion resulted in a restricted set of CpGs available for
analysis, ranging from 1% to 17% of autosomal CpGs, depending on the
tissues selected for each analysis. These limitations underscore the
need for an expanded dataset of bone methylation.

For reference-derived changes, we require that the mean methy-
lationin the ‘target’ will be closer to the mean methylation of the ‘out-
group’ than to that of the ‘reference’, whereas for outgroup-specific
changes we require the opposite. Addition of this requirement was
important forreducing the level of false predictions, which result from
the small number of samples in the ‘target’ compared with the other
groups. However, when this additional requirement is used, the algo-
rithmisunable to detect CpG positions that have gone through gradual
methylation change (for example, that the ‘outgroup’ is unmethyl-
ated, the ‘target’ is partially methylated and the ‘reference’ is highly
methylated). Such positions could potentially be detected as being
simultaneously reference-derived and outgroup-specific methylation
changes. However, mean methylationin the ‘target’ group will be closer
to either the ‘outgroup’ or the ‘reference’. Therefore, the additional
requirement will lead the algorithm to detect only one of the two types
of fundamental changes, and information on gradual changes will be
lost. We hope that in the future more methylation maps of archaic
humans will be published, making use of the additional requirement
unnecessary, and allowing for the detection of gradual fundamental
methylation changes.

Overall, we present an algorithm to infer DNA methylation in
non-skeletal archaictissues. The algorithm can be applied to any triad
of species or groups and could be useful whenever DNA methylation
inacertain tissue is unavailable or difficult to obtain.

Methods

DNA methylation data

We collected and generated DNA methylation data from seven tis-
sues and cell types (neurons, bone, kidney, heart, liver, lung and bulk
brain) across three species (modern human, chimpanzee and rhesus
macaque). In addition, we used reconstructed DNA methylation data
inbones of modernand archaic humans. Datawere collected only from
autosomes, to avoid the unique methylation patterns that characterize
sex chromosomes.

Bone DNA methylation of present-day individuals published in
this study. DNA methylation maps from four femur head bones from
present-day humans were generated using whole-genome bisulfite
sequencing (WGBS). Patients were females with osteoarthritis. Sam-
ples were extracted during total hip replacement surgery and were
taken fromthe healthy part of thebone. All four patients signed aform
according to Helsinki approval 0178-13-HMO. DNA extraction and the
WGBS protocol are described in a previous publication’ (Supplemen-
tary Table 4). In brief, DNA was extracted from bones using a QlIAamp
DNA Investigator kit (Qiagen, catalogue no. 56504) and DNA libraries
were built with the lllumina TruSeq Sample Preparation kit. Bisulfite
treatment was applied in two rounds using the EpiTect Bisulfite kit (Qia-
gen) and paired-end sequencing was performed on an Illumina Hi-Seq
2000 instrument. We aligned the reads to hgl9 genome assembly using
Bismarkv.0.23.0 with the following parameters:--bowtie2 --non_bs_mm
-p 4 --multicore 4. We then used bismark_methylation_extractor to
extract methylation calls with the following parameters: -p --parallel 4
--bedGraph. We did not perform filtration of CpG positions by coverage,

as we used the default Bismark setting of including positions with a
minimum coverage of 1x.

Previously published modern DNA methylation. Neuronal data
include WGBS DNA methylation data measured in neurons isolated
from prefrontal cortices of humans, chimpanzees and macaques. Data
for humans were downloaded from Gene Expression Omnibus (GEO)
accession number GSE107638 (ref. 20), taking only the 25 healthy
controls. Data for chimpanzees and macaques were downloaded from
GEO accession number GSE151768 (ref. 21). WGBS DNA methylation
dataforkidneys, hearts, livers and lungs of four specimens for each of
these specieswere downloaded from GEO accession number GSE112356
(refs. 69,70). Bulk WGBS brain data that were generated from pre-
frontal cortices of three modern humans and three chimpanzees was
downloaded from GEO accession number GSE37202 (ref. 66). Bulk
WGBS data of two macaques were downloaded from GEO accession
number GSE77124 (ref. 65). For bone, we used ten Illumina Infinium
MethylationEPIC BeadChip (850K) methylation arrays from rhesus’
and data acquired by Gokhman et al.’ including one modern human
and one chimpanzee WGBS map, one chimpanzee reduced representa-
tion bisulfite sequencing map and four chimpanzee 850K methylation
arrays (Supplementary Table 4).

Most non-human DNA methylation data were already mapped
to the human hgl9 reference genome. However, this was not done for
rhesus bulk brain samples, and we therefore mapped these datato hg19
using liftOver”. This mapped ~30% of the rhesus CpG positionsto a cor-
responding CpG positioninhuman. However, in asignificantly enriched
number of cases, the rhesus CpG positions were mapped to a position
preceding a human CpG position by a single base (Extended Data
Fig. 4). We considered these as valid mappings, ending up with ~-40%
oftherhesus CpG positions being successfully mapped to the human
hgl9 genome reference.

Ancient DNA methylation maps. We used our newest version of the
RoAM software tool* to reconstruct the methylome of a Mesolithic
anatomically modern human individual from Stora Karlso, Sweden
(-9,000 years ago) that had been previously sequeneced” (Supplemen-
tary Table4).Inaddition, we used our previously published methylation
maps of five ancient anatomically modern humans’, one Neanderthal
and one Denisovan®, which at the time of writing are the only uracil DNA
glycosylase-treated high-coverage archaic samples, two prerequisites
for computational reconstruction of aDNA methylation”.

Batch effects. To minimize batch effects stemming from combining
data from different sources, we took several measures. First, all data
used for optimization and cross-validation were taken from the same
laboratory®®’°, Similarly, all the brain data, including both prefron-
tal cortex neurons and bulk brain tissue, were taken from the same
laboratory?02-6366,

Most of the bone data were produced by us, either specifically
for this paper or in previous work’. To address consistency between
the modern bone samples and the ancient ones, we used histogram
matching duringthe DNA methylationreconstruction, fitting the recon-
structed histogramto that of previously published modern bone data®”.

Finally, remaining batch effects are accounted for in the estimated
false discovery rates of our method.

Detecting CpGs positions with differential DNA methylation
The algorithm receives methylation data from three species and two
tissues (Fig. 1b). Only CpG positions where, for each tissue and spe-
cies, data are available from at least two samples were considered. In
addition, only positions where the variance in methylation levels in
eachtissue and species was <0.08 were considered. This threshold was
selected to guarantee that a minimum set of two samples will have at
most a40% difference in methylation level.
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Identifying reference-derived fundamental changes. Let us have
methylation datafor NCpG positionsandlet 0 < mf" < 1bethe meas-
ured methylation level of sample at CpG positioni(i=1,...,N), in
speciessandtissue u. We say that the methylation level at CpG position
iisreference-derivedin tissue ‘all’if

[€79] > 0 + ki ome.

Here, ¢7“is the statistic of an equal-variance ¢-test at CpG position
iin tissue ‘all’, contrasting the ‘reference’ with the ‘target’ and ‘out-
group’,and ¢**and ¢ are the estimators of the meanand the standard
deviation of the statistic across the N positions. K is a parameter.

Similarly, we say that CpG positionishows differential methylation
between the ‘reference’ and the ‘outgroup’in tissue ‘partial’if

|tfo,p| > P 4 k",do‘m"’.

Here, ;" is the statistic of an equal-variance t-test at CpG position
iintissue ‘partial’, contrasting the ‘reference’ with the ‘outgroup’,and
t? and o™” are the estimators of the mean and the standard deviation
of the statistic across the N positions. k/ is a parameter.

To identify reference-derived fundamental changes (left-hand
columninFig. 1c), welook for CpG positions i that satisfy:

674 > 7@ + kidora (1a)
[¢/7] = 0P + ko™, (1b)
th . P > 0. (1c)

L L

Inequality (equation (1c)) guarantees that the methylation dif-
ference between the ‘reference’ and the ‘outgroup’ in both tissues is
inthe same direction.

We found it useful to add a fourth condition to equation (1a-c),
verifying that the mean methylation in ‘target’ is closer to the mean
methylation of the ‘outgroup’ than to the mean methylation of the
reference. If m{*, m>* and m?* are the mean methylation across samples
in tissue ‘all’ in position i of the ‘reference’, ‘target’ and ‘outgroup’,
respectively, then

’mf‘“ -mpY > ‘mf“ -m2° (1d)

Intheimplementation, we kept this additional condition optional
because the algorithm detects methylation changesin high precision
even without it. However, it is advisable to use it when the number of
samplesin‘target’is small compared with the other groups, because it
prevents mispredictions that arise as aresult of the lower weight of the
‘target’ samples in the ¢-test. Because only two archaichuman samples
serveas ‘target’in the current study, we used this additional condition
throughout the paper. Positions that satisfy equation (1a-d) are those
for which we predict that the methylation in ‘target’ in tissue ‘partial’
clusters with that in ‘outgroup’, and different from that in ‘reference’
(Fig.1c).

Identifying outgroup-specific fundamental changes. We follow
a similar approach to identify fundamental changes in which the
methylation change in tissue ‘all’ is outgroup-specific (right-hand
column in Fig. 1c). CpG positions that we predict have gone through
outgroup-specific fundamental changes should satisfy:

[¢£27] > 29 + k3o (2a)

|t:a,p| > frop 4+ kZSO'm’p, (2b)

- > 0.

1 L

(20)

Here, ¢7“is the statistic of an equal-variance t-test at CpG position
iintissue‘all’ contrasting the ‘outgroup’ with the ‘target’and ‘reference’,
t>?and 0%¢ are the estimators of the mean and the standard deviation
of the statistic across the N positions, and k%’ and k{° are parameters.
Note that the ¢-test for tissue ‘partial’, equation (2b), isidentical to the
one for the reference-derived fundamental changes, equation (1b),
because in both cases we wish to find a significant difference in tissue
‘partial’ between the ‘outgroup’ and the ‘reference’. Yet, we allow the
parameters k' and k% to be potentially different.

Here, too, we added a fourth condition that guarantees that the
mean methylationin ‘target’is closer to ‘reference’ than to ‘outgroup’,

> ‘mf‘” —-m°

i =] ()

In the implementation, this condition is optional, but we used it
throughout this work.

Measuring performance. Whenever the true value of the methylation
in the ‘target’ at tissue ‘partial” is known, we can use it to estimate the
precision of our algorithm. To this end, we define CpG positions for
which there is truly a reference-derived methylation change in tissue
‘partial’ as those that satisfy

67| > £ + Kidor. 3)

Here, t;” is the statistic of an equal-variance t-test at CpG position
iintissue ‘partial’, contrasting the ‘reference’ with the ‘target’ and
‘outgroup’, *» and o"? are the estimators of the mean and the standard
deviation of the statistic across the N positions, and k¥ is aparameter.
Similarly, we define CpG positions for which there is truly an
outgroup-specific methylation change in tissue ‘partial’ as those that
satisfy

[¢7P] > toP + k2S00, (4)

where ¢”is the statistic of an equal-variance t-test at CpG position iin
tissue ‘partial’, contrasting the ‘outgroup’ with the ‘target’ and ‘refer-
ence’, t°? and ¢°” are the estimators of the mean and the standard
deviation of the statistic across the N positions, and «* is a
parameter.

LetS,betheset of CpG positions for which we predict areference-
derived fundamental change, namely, those positions that satisfy
equation (1a-d). Let S, be the set of reference-derived fundamental
changes that are considered ‘true’ changes, defined as the collection
of positions that satisfy

6] = e + kiloma (5a)
77| > P + k4o, (5b)
P >0, (50)

where equation (5a) is identical to equation (1a) and (5b) is identical
to equation (3). Then, the precision of our algorithm that predicts
reference-derived fundamental changes is

_ 1Sp N Se

Prc s
ISy

(6)

where |S|is the size of set S.
Analogously, for outgroup-specific fundamental changes we
define S, as the set of positions that satisfy equation (2a-d), and S, as

Nature Ecology & Evolution


http://www.nature.com/natecolevol

Article

https://doi.org/10.1038/s41559-024-02571-w

the set of positions that are taken as ‘true’ outgroup-specific funda-
mental change, namely the set of positions that satisfy

[67] = 9 + k0%, (7a)
9] > 9 + k0%, (7b)
- tf’p >0, (7¢)

where equation (7a) isidentical to equation (2a) and (7b) isidentical to
equation (4). Precision is defined as in equation (6).

Parameter estimation. Overall, the algorithms that predict reference-
derived changes and outgroup-specific changes areindependent of each
other,and eachrespective set of parameters can be optimized separately.
Each algorithm uses two parameters, k¢ and £, for predicting
reference-derived changes (equation (1a-d)),and £5* and k%’ for predict-
ing outgroup-specific changes (equation (2a-d)). Moreover, the perfor-
mance of each algorithm is determined using an additional parameter,
either k for the reference-derived changes or k% for the
outgroup-specific changes. Allthree parameters for eachalgorithmwere
optimized together. Permuted datawere generated by pairingarandom
CpG position in tissue ‘partial’ to each position in tissue ‘all’. For each
analysis, 10,000 permuted datasets were generated. The optimized
parameters were chosen as the values that gave the largest difference
betweenthe precision of the algorithm onthereal dataandits precision
on permutated data.

We performed the optimization process by using chimpanzee as
‘target’, modern humans as ‘reference’ and rhesus macaque as ‘out-
group’and choosing heart astissue ‘all’and kidney as tissue ‘partial’. We
scanned all values of the parametersinagrid of values from 2 to 4 using
linear spacing of 0.2 for each parameter. Notably, for each value of the
parameters, both in the reference-derived and the outgroup-specific
comparisons, the precision of the algorithm when applied tothereal data
was higher thanthe average precision of the corresponding permutated
data (Extended DataFig.1). Moreover, not asingle permutationinany set
of parameters achieved precision that exceeded that of thereal data. The
optimized values of the parameters are givenin Supplementary Table 1.

Some of the optimized parameters take their value at the edge of
thegrid, pointing at the possibility of achieving even higher precision
using values that are outside the current grid. However, we noticed that
in these cases precision reaches a plateau, so that the improvement
is minor when changing the value of the parameter. Combined with
the fact that values of the parameters outside the grid decreased the
number of detections and hence reduced the power of the analysis, we
decided tobound the value of the parameters and not extend the grid
(Extended DataFig. 2). The set of optimized parameters is remarkably
robust to theselection of the training dataset and changed only slightly
when using other tissue combinations (Supplementary Table 2).

Smoothing data

Smoothing of methylation datain modern samples was performedin
the cross-validation partonly. It was done using a moving average with
a fixed window size over CpG positions. We used a window size of 31
CpG positions, to match typical window sizes used for reconstructing
ancient methylation®’.

Gene enrichment analysis

A CpG position with a predicted fundamental change is associated
with a geneif it resides in the gene body or in the promoter region,
defined as 5,000 bp upstream of the transcriptionstartsiteto 1,000 bp
downstream of it. Gene body coordinates and gene names were deter-
mined using the hgl9 genome reference downloaded from UCSC
genome assembly’.

We used DAVID>7® to test for enrichment of our gene lists in bio-
logical functions. We used all default datasets.

Enhancer enrichment analysis

Enhancer locations were downloaded from EnhancerAtlas”. For
bone enhancers we used the osteoblasts datasets. For neuron
enhancers we combined data of embryonic stem cell neurons and
cerebellum neurons. Enrichment was evaluated using a hyperge-
ometric test followed by Benjamini-Hochberg FDR procedure.
EnhancerAtlas includes a comprehensive list of genes associated
with eachenhancer. We used DAVID to investigate functional enrich-
ments for genes linked to enhancers thatintersect with the detected
positions. Further, we used MEME-ChIP”® to examine which of the
positions that overlap enhancers also overlap binding motifs, and
then used TOMTOM?” to identify transcription factors that bind
these motifs.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All sequencing and methylation data generated for this study was
depositedinthe National Center for Biotechnology Information’s Gene
Expression Omnibus under GEO access number GSE276666.

Code availability
The MATLAB code canbe downloaded from http://carmelab.huji.ac.il/
software.html.
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Extended Data Fig. 1| Precision on training set as a function of the parameters ka and kp. Precision of the algorithm in detection of a outgroup-specific
fundamental changes and b reference-derived fundamental changes, for each value of the parameters ka and kp. In yellow: the precision when running the algorithm
onreal data, in blue: the precision when running on permutations.
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Extended Data Fig. 2| Precision versus number of detections. Precision of the parameter Kp when the other parameters are fixed to the optimized value.
reaches plateau in higher values of the parameters, whereas power is decreasing. b, A similar comparison for the parameter Ka while the rest of the parameters are
a, Precision and the number of outgroup-specific changes detected as a function fixed to the optimized value.
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Extended Data Fig. 3| Precision on anindependent dataset. Validating the algorithm by measuring precision onindependent dataset. To complement the results
presented in the main text, here chimpanzees were selected as reference and modern humans as target.
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Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall
numbers in this Reporting Summary. Please state if this information has not been collected. Report sex-based analyses where
performed, justify reasons for lack of sex-based analysis.

For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.
Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
Outcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.
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Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:

Yes

[] Public health

|:| National security

|:| Crops and/or livestock

|:| Ecosystems
|:| Any other significant area
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Experiments of concern

Does the work involve any of these experiments of concern:
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Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin
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Any other potentially harmful combination of experiments and agents

Plants

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

was applied.
Authentication Describe-any-atthentication-procedures foreach seed stock- tised-or-novel-genotype-generated.Describe-any-experiments-used-to

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.




ChlP-seq

Data deposition

|:| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,
May remain private before publication. | provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.
Genome browser session Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
(e.g. UCSC) enable peer review. Write "no longer applicable" for "Final submission" documents.
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Methodology
Replicates Describe the experimental replicates, specifying number, type and replicate agreement.
Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and
whether they were paired- or single-end.
Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and

lot number.

Peak calling parameters | Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files

used.
Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.
Software Describe the software used to collect and analyze the ChlP-seq data. For custom code that has been deposited into a community

repository, provide accession details.

Flow Cytometry

Plots

Confirm that:
|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|:| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|:| All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell

population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state; event-related or block design.




Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

Behavioral performance measures  State number and/or type of variables recorded (e.q. correct button press, response time) and what statistics were used
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across

subjects).
Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI [ ] Used [ ] Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g.
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.qg. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: [ | whole brain || ROI-based | | Both

Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

(See Eklund et al. 2016)

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.qg. FWE, FDR, permutation or Monte Carlo).

Models & analysis

n/a | Involved in the study
|:| |:| Functional and/or effective connectivity

|:| |:| Graph analysis

|:| |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis  Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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